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Recap from last week

 |If threads share state, then you must use
locks to achieve thread-safety

— Synchronized
— Java.util.concurrent classes
* |f threads need to coordinate to order
actions
— Guarded conditions (wait/notify)
— Beware of deadlocks

« Use executors to manage threads
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Loops/Recursion and Threads

 |If we have a loop with completely
Independent iterations:

— Can use a thread to execute each iteration
« Effects on performance?
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void processSequentially(List<Element> elements) {
for (Element e : elements)
process(e);

}

void processinParallel(Executor exec, List<Element> elements) {
for (final Element e : elements)
exec.execute(new Runnable() {
public void run() {
process(e);

}
D;

JCIP Listing 8.10




Loops/Recursion

« Parallelization of sequential
loops works when:

— Each iteration is completely
iIndependent of others

— Work done in each iteration
IS enough to offset cost of
thread management

Northeastern University
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Recursion

« Often independent sequential loops in
recursive algos

« E.g. each iteration does not require results of
recursive iterations it invokes

« Examples?
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Recursion (JCIP Fig 8.11) Depth-First Tree
Traversal

public <T> void sequentialRecursive(List<Node<T>> nodes,
Collection<T> results) {
for (Node<T> n : nodes) {
results.add(n.compute());
sequentialRecursive(n.getChildren(), results);

}
}
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Recursion

public <T> void parallelRecursive(final Executor exec,
List<Node<T>> nodes,
final Collection<T> results) {
for (final Node<T> n : nodes) {
exec.execute(new Runnable() {
public void run() {
results.add(n.compute());

}
D;
parallelRecursive(exec, n.getChildren(), results);
}
}
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Recursion

public <T> Collection<T> getParallelResults(List<Node<T>> nodes)
throws InterruptedException {

ExecutorService exec = Executors.newCachedThreadPool();
Queue<T> resultQueue = new ConcurrentLinkedQueue<T>();

parallelRecursive(exec, nodes, resultQueue);

exec.shutdown();
exec.awaitTermination(Long.MAX_VALUE, TimeUnit. SECONDS);

return resultQueue;
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READERS WRITERS
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Readers-Writers Problem

 Classic concurrency .
problem Reader Writer Problem

* Multiple readers and writers
to a shared database

« Many concurrent readers

e 1 writer
— No other readers or writers

« Simple solution — writers
wait until no readers

Writers
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Readers Writers — Class Exercise

e Clone the repo at:
— https://github.com/gortonator/Readers\Writers

« Spend a few minutes to understand the code

* Run with various numbers of readers and
writers, eg:
-11
- 52
— 103

« What do you observe?



https://github.com/gortonator/ReadersWriters
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Readers Writers — Class Exercise

1. Modify the code to use Executors and
Runnables

2. How would you change the code to give
writers priority?




Northeastern University

ReadWriteLock

« ReadWriteLock maintains a pair of associated
locks,

« one for read-only operations
* one for writing

* The read lock may be held simultaneously by
multiple reader threads

— so long as there are no writers.
* The write lock is exclusive
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Quick Aside - RentrantLock

 Areentrant mutual exclusion Lock

— public class ReentrantLock extends Object, implements Lock,
Serializable

e same basic semantics as implicit monitor lock using
synchronized methods/statements

« Athread invoking lock will acquire the lock, when the
lock is not owned by another thread.

* Lock returns immediately if the current thread already
owns the lock.

« Some extended capabilities.
— Fair/unfair acquisition policies,
— IsLocked, getLockQueueLength
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Quick Aside - RentrantLock

class X {
private final ReentrantLock lock = new ReentrantLock();

...

public void m() {
lock.lock(); // block until condition holds

try {
/Il ... method body

} finally {
lock.unlock()
}
}
}
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Thread Safe Dictionary.

public class Dictionary {

private final ReentrantReadWriteLock readWriteLock =
new ReentrantReadWriteLock();

private final Lock read =readWriteLock.readLock();
private final Lock write = readWriteLock.writeLock();
private HashMap<String, String> dictionary = new HashMap<String, String>();

public void set(String key, String value) {
write.lock();
try {
dictionary.put(key, value);
} finally {
write.unlock();
}
}
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public String get(String key) {
read.lock();

try{
return dictionary.get(key);

} finally {
read.unlock();
}
}

public String[] getKeys(){
read.lock();
try{
String keys[] = new String[dictionary.size()];
return dictionary.keySet().toArray(keys);
} finally {
read.unlock();

}
}
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Class Exercise

« Modify the database from the previous example
to use a ReadWriteLock
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SCALABILITY
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Scalability

Scalability describes the ability to improve throughput or capacity when additional computing resources (such as
additional CPUs, memory, storage, or /0 bandwidth) are added.
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Engineering Concerns

Threads make it possible to better utilize resources

But also introduce overheads ....
— Creation, context switching, management, coordination

Some terminology ...

Service time/latency/response time
— Measures of how fast a piece of work happens
Capacity/throughput
— How much work can be performed with a given quantity of computing resources
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Amdahl’'s Law
The perfect world ....

Scale-Up Linearity

Client Writes/s by node count — Replication Factor = 3
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http://www.datastax.com/2012/01/choosing-the-right-architecture-
for-big-data-scale
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Amdahl’'s Law

Throu t
Throughput i

Scalibility
barrier point

R

Non-linear system, growing beyond
a certain barrier point adds
complexity that hinders throughput
increase

Linear Scalable system, each
addition of an hardware unit adds a
throughput unit
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Amdahls’s Law Example
Serialized Access to a task queue (jcip p141)

public class WorkerThread extends Thread {
private final BlockingQueue<Runnable> queue;

public WorkerThread(BlockingQueue<Runnable> queue) {
this.queue = queue;

}

public void run() {
while (true) {
try {
Runnable task = queue.take();
task.run(); // results generated by thread stored somewhere?
} catch (InterruptedException e) {
break; /* Allow thread to exit */

}




Northeastern University

Thread Overheads

 Context switching has costs
— Manipulates shared structures in OS/VM

— For a new thread, local data not likely in cache so higher latencies due to cache misses
 Cache pollution: newly running threads run slower until cache fills

— Depends on CPU, but typically a microsecond or so
 Every time a thread blocks it gets switched

— Blocking IO

— Contended locks

— Condition variables

 Frequently blocking threads reduce throughput
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Reducing Lock Contention

« Serialization hurts scalability
 Context switching hurts performance
 Lock contention hurts both!!

How can we reduce lock contention?
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Narrowing lock scope

 Busy (hot) locks limit scalability.

« Example:
— Operation holds a lock for 2 mSecs
— All threads must acquire this lock

« What is the maximum throughput we can
attain?
— No matter how many processors we have
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Get In, Get Out (jcip p149)

public class AttributeStore {
private final Map<String, String>
attributes = new HashMap<String, String>();

public synchronized boolean userLocationMatches(String name,
String regexp) {
String key = "users." + name + ".location"; // construct key
String location = attributes.get(key); /[ search hashmap
if (location == null)
return false;
else
return Pattern.matches(regexp, location); // process results
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Get in, Get out (jcip p149)

public class BetterAttributeStore {
private final Map<String, String>
attributes = new HashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;
synchronized (this) {
location = attributes.get(key);
}
if (location == null)
return false;
else
return Pattern.matches(regexp, location);
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Easier — use thread safe collections

public class BetterAttributeStore {
private final ConcurrentHashMap<String, String>
attributes = new ConcurrentHashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;

location = attributes.get(key);

if (location == null)
return false;
else
return Pattern.matches(regexp, location);
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Lock Splitting (jcip p146)

public class ServerStatusBeforeSplit {

public final Set<String> users;
public final Set<String> queries;

public ServerStatusBeforeSplit() {
users = new HashSet<String>();
queries = new HashSet<String>();

}

public synchronized void addUser(String u) {
users.add(u);

}

public synchronized void addQuery(String q) {
queries.add(q);

}

public synchronized void removeUser(String u) {
users.remove(u);

}

public synchronized void removeQuery(String q) {
gueries.remove(q);

}




Lock Splitting (jcip p146)

public class ServerStatusAfterSplit {
public final Set<String> users;
public final Set<String> queries;

public ServerStatusAfterSplit() {
users = new HashSet<String>();
gueries = new HashSet<String>();
}
public void addUser(String u) {
synchronized (users) {
users.add(u);

}

}
public void addQuery(String q) {

synchronized (queries) {
gueries.add(q);

}
}

/I other refactored methods omitted

Northeastern University
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Lock Striping

 Basic approach is to partition a data structure and use a different lock for each
partition
— ConcurrentHashMap uses 16 locks
— Each lock guards 1/16™ of the hash buckets

« How many concurrent threads can be accessed in this example?
« What if we need to grow the hash map?
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Lock Striping (jcip p148)

public class StripedMap {
/I Synchronization policy: buckets[n] guarded by locks[n%N_LOCKS]
private static final int N_LOCKS = 16;
private final Node[] buckets;
private final Object[] locks;

private static class Node { ....} // stuff missing

public StripedMap(int numBuckets) {
buckets = new Node[humBuckets];
locks = new Object[N_LOCKS];
for (inti=0;i<N_LOCKS; i++)
locks[i] = new Object();




Northeastern University

Lock Striping (jcip p148)

private final int hash(Object key) {
return Math.abs(key.hashCode() % buckets.length);
}

public Object get(Object key) {
int hash = hash(key);
synchronized (locks[hash % N_LOCKS]) {
for (Node m = buckets[hash]; m = null; m = m.next)
if (m.key.equals(key))
return m.value;

}

return null;
}
public void clear() { // non atomic clear
for (inti=0; i < buckets.length; i++) {
synchronized (locks[i % N_LOCKS]) {
buckets]i] = null;

}
}
1}
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TESTING




Northeastern University

Testing concurrent programs

* Tricky In the face of non-determinism

« Larger number of potential interactions and
failure cases

 Test suites therefore have to be more
extensive and run for longer




Northeastern University

Testing concurrent programs

* Most tests can be classified as testing:

— Safety
« Nothing bad ever happens
» Typically testing invariants hold

— Liveness
« Something good eventually happens
 Trickier — eg testing for deadlocks
 Also includes throughput, response times, scalability
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Testing for Correctness

« Similar as for testing sequential code
* |dentify post conditions and invariants

« Let's look at an example:
— Testing a bounded buffer (JCIP section 12.1)
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public class SemaphoreBoundedBuffer <E> {
private final Semaphore availableltems, availableSpaces;
private final E[] items;
private int putPosition = 0, takePosition = 0;

public SemaphoreBoundedBuffer(int capacity) {
if (capacity <= 0)
throw new lllegalArgumentException();
availableltems = new Semaphore(0);
availableSpaces = new Semaphore(capacity);
items = (E[]) new Obiject[capacity];
}

public void put(E x) throws InterruptedException {
availableSpaces.acquire();
dolnsert(x);
availableltems.release();

}

public E take() throws InterruptedException {
availableltems.acquire();
E item = doExtract();
availableSpaces.release();
return item;




public boolean isEmpty() {
return availableltems.availablePermits() == O;

}

public boolean isFull() {
return availableSpaces.availablePermits() == 0O;

}

private synchronized void dolnsert(E x) {
int i = putPosition;
items][i] = Xx;
putPosition = (++i == items.length) ? O : i;

}

private synchronized E doExtract() {
int | = takePosition;
E x = items]i];
items[i] = null;
takePosition = (++i == items.length) ? 0 : i;
return Xx;

Northeastern University
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Basic Unit Tests

 Test post-conditions and invariants, eg:
— New buffer should identify itself as empty
— New buffer should identify itself not full
— Insert N elements into a buffer with capacity N and check it is full
— Insert N elements into a buffer with capacity N and check it is not empty
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Basic Unit Tests Examples

public class TestBoundedBuffer extends TestCase {

void testIsEmptyWhenConstructed() {
SemaphoreBoundedBuffer<integer> bb = new SemaphoreBoundedBuffer<integer>(10);
assertTrue(bb.isEmpty());
assertFalse(bb.isFull());

}

void testlsFullAfterPuts() throws InterruptedException {
SemaphoreBoundedBuffer<integer> bb = new SemaphoreBoundedBuffer<integer>(10);
for (inti=0;i<10; i++)
bb.put(i);
assertTrue(bb.isFull());
assertFalse(bb.isEmpty());
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Testing Blocking Operations

If an operation is meant to block, test only passes if thread does not proceed
But for how long?

Need to make an educated guess, e.qg.:

— private static final long LOCKUP_DETECT_TIMEOUT = 1000;
Example:

— Try to take an element from an empty buffer

— Create a taker thread, wait, and interrupt it if still blocked

— If take() succeeds, then test fails

— I take() successfully interrupted and exists, then test succeeds
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void testTakeBlocksWhenEmpty() {
final SemaphoreBoundedBuffer<integer> bb = new SemaphoreBoundedBuffer<integer>(10)
Thread taker = new Thread() {
public void run() {
try {
int unused = bb.take();
fail(); // if we get here, it's an error
} catch (InterruptedException success) { // thread exits

}

}

I

try {
taker.start();
Thread.sleep(LOCKUP_DETECT_TIMEOUT);
taker.interrupt();
taker.join(LOCKUP_DETECT_TIMEOUT);
assertFalse(taker.isAlive()); // verify join returned successfully as thread will be dead

} catch (Exception unexpected) {
fail();

}

}
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Testing Safety

« Race conditions are trickier to test

 Tests need to be multi-threaded and can be complex

« Want tests to effect non-determinism as little as possible
— Test code may obscure deadlocks in really evil cases

 |deally checking the test properties does not require any
synchronization
— And hence effects order of execution as minimally as possible




Northeastern University

Testing Bounded Buffer Example

 Check everything put into a queue/buffer comes out
— And nothing else!

 Basic approach:
— Each producer calculates a checksum for all the messages it produces
— Each consumer calculates a checksum for all the messages it receives

— When all producers/consumers complete, checksum are combined
* Ifthey are equal, test passes
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Testing Bounded Buffer Example

 Should generate test data randomly

— Minimize chances of tests accidentally passing
 Roll-your-own simple random number generator

— As RNGs are thread-safe and hence effect thread synchronization

— Each thread has own RNG so doesn'’t need to be thread-safe
— Seeded with values based on time ensures different values every test

« We'll see this in the example soon ...
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Testing Bounded Buffer Example

 To introduce more randomness, coordinate starting and termination of threads
— Ensure sequential thread operation doesn'’t introduce an element of determinism
— Ensure testing of checksums is done after all threads finished
— Use CyclicBarrier to coordinate start and end behavior
 Termination condition doesn’t require thread interactions
— Producers and consumers create and remove known numbers of items
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Spend a few minutes looking at

http://icip.net/listings/PutTakeTest.|Java

See if you can understand how it works?



http://jcip.net/listings/PutTakeTest.java
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public class PutTakeTest extends TestCase {
protected static final ExecutorService pool = Executors.newCachedThreadPool();
protected CyclicBarrier barrier;
protected final SemaphoreBoundedBuffer<integer> bb;
protected final int nTrials, nPairs;
protected final Atomicinteger putSum = new Atomicinteger(0);
protected final Atomiclnteger takeSum = new Atomiclnteger(0);

public static void main(String[] args) throws Exception {
new PutTakeTest(10, 10, 100000).test(); // sample parameters
pool.shutdown();

}

public PutTakeTest(int capacity, int npairs, int ntrials) {
this.bb = new SemaphoreBoundedBuffer<integer>(capacity);
this.nTrials = ntrials;
this.nPairs = npairs;
this.barrier = new CyclicBarrier(npairs * 2 + 1); // initialize the barrier +1 for main thread
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void test() {
try {
for (inti=0; i< nPairs; i++) { // create the threads
pool.execute(new Producer());
pool.execute(new Consumer());
}
barrier.await(); // wait for all threads to be ready
barrier.await(); // wait for all threads to finish
assertEquals(putSum.get(), takeSum.get());
} catch (Exception e) {
throw new RuntimeException(e);

}
}
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class Producer implements Runnable {
public void run() {

try {
int seed = (this.hashCode() * (int) System.nanoTime());
int sum = 0;

barrier.await();

for (int i = nTrials; i > 0; --i) {
bb.put(seed);
sum += seed:;
seed = xorShift(seed);

}

putSum.getAndAdd(sum);

barrier.await();

} catch (Exception e) {
throw new RuntimeException(e);

}
}
}
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class Consumer implements Runnable {
public void run() {

try {
barrier.await();
int sum = O;

for (inti=nTrials; i > 0; --i) {
sum += bb.take();
}
takeSum.getAndAdd(sum);
barrier.await();
} catch (Exception e) {
throw new RuntimeException(e);

}
}
}
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Testing Concurrent Code

« Good example of the complexity of test cases can be higher than code
complexity

 Other things to test:
* Resource management
— See testLeak example in http://jcip.net/listings/TestBoundedBuffer.java
 Performance
— Requires adding timing information and monitoring
 Scalability
— Requires large volume tests and coordination of more resources

 These are central topics covered in Building Scalable Distributed Systems
- ©



http://jcip.net/listings/TestBoundedBuffer.java
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Summary

Threads can be used to parallelize independent loop
iterations and independent recursive invocations.

Readers-Writers is a classic concurrency problem

Scalability requires careful design is always limited by
serialization

Testing concurrent systems is tricky due to large
amount of failure modes and non-determinism

61




Northeastern University




