
CS5510

Professor Ian Gorton

Northeastern University - Seattle

Northeastern University 1

CONCURRENCY II

Week 10

2Northeastern University

3

http://jcip.net/

Overview

Northeastern University 4

• Loops/recursion and threads

• Readers Writers and locking

• Scalability

• Testing

• If threads share state, then you must use

locks to achieve thread-safety

– Synchronized

– java.util.concurrent classes

• If threads need to coordinate to order

actions

– Guarded conditions (wait/notify)

– Beware of deadlocks

• Use executors to manage threads

Recap from last week

Northeastern University 5

• If we have a loop with completely

independent iterations:

– Can use a thread to execute each iteration

• Effects on performance?

Loops/Recursion and Threads

Northeastern University 6

Northeastern University 7

void processSequentially(List<Element> elements) {

for (Element e : elements)

process(e);

}

void processInParallel(Executor exec, List<Element> elements) {

for (final Element e : elements)

exec.execute(new Runnable() {

public void run() {

process(e);

}

});

}

JCIP Listing 8.10

• Parallelization of sequential

loops works when:

– Each iteration is completely

independent of others

– Work done in each iteration

is enough to offset cost of

thread management

Loops/Recursion

Northeastern University 8

• Often independent sequential loops in

recursive algos

• E.g. each iteration does not require results of

recursive iterations it invokes

• Examples?

Recursion

Northeastern University 9

Recursion (JCIP Fig 8.11) Depth-First Tree

Traversal

Northeastern University 10

Recursion

Northeastern University 11

public <T> void parallelRecursive(final Executor exec,

List<Node<T>> nodes,

final Collection<T> results) {

for (final Node<T> n : nodes) {

exec.execute(new Runnable() {

public void run() {

results.add(n.compute());

}

});

parallelRecursive(exec, n.getChildren(), results);

}

}

Recursion

Northeastern University 12

public <T> Collection<T> getParallelResults(List<Node<T>> nodes)

throws InterruptedException {

ExecutorService exec = Executors.newCachedThreadPool();

Queue<T> resultQueue = new ConcurrentLinkedQueue<T>();

parallelRecursive(exec, nodes, resultQueue);

exec.shutdown();

exec.awaitTermination(Long.MAX_VALUE, TimeUnit.SECONDS);

return resultQueue;

}

READERS WRITERS

Northeastern University 13

• Classic concurrency

problem

• Multiple readers and writers

to a shared database

• Many concurrent readers

• 1 writer

– No other readers or writers

• Simple solution – writers

wait until no readers

Readers-Writers Problem

Northeastern University 14

• Clone the repo at:

– https://github.com/gortonator/ReadersWriters

• Spend a few minutes to understand the code

• Run with various numbers of readers and

writers, eg:

– 1 1

– 5 2

– 10 3

• What do you observe?

Readers Writers – Class Exercise

Northeastern University 15

https://github.com/gortonator/ReadersWriters

1. Modify the code to use Executors and

Runnables

2. How would you change the code to give

writers priority?

Readers Writers – Class Exercise

Northeastern University 16

• ReadWriteLock maintains a pair of associated

locks,

• one for read-only operations

• one for writing

• The read lock may be held simultaneously by

multiple reader threads

– so long as there are no writers.

• The write lock is exclusive

ReadWriteLock

Northeastern University 17

• A reentrant mutual exclusion Lock

– public class ReentrantLock extends Object, implements Lock,

Serializable

• same basic semantics as implicit monitor lock using

synchronized methods/statements

• A thread invoking lock will acquire the lock, when the

lock is not owned by another thread.

• Lock returns immediately if the current thread already

owns the lock.

• Some extended capabilities.

– Fair/unfair acquisition policies,

– isLocked, getLockQueueLength

Northeastern University 18

Quick Aside - RentrantLock

Quick Aside - RentrantLock

Northeastern University 19

class X {

private final ReentrantLock lock = new ReentrantLock();

// ...

public void m() {

lock.lock(); // block until condition holds

try {

// ... method body

} finally {

lock.unlock()

}

}

}

Thread Safe Dictionary.

Northeastern University 20

public class Dictionary {

private final ReentrantReadWriteLock readWriteLock =

new ReentrantReadWriteLock();

private final Lock read = readWriteLock.readLock();

private final Lock write = readWriteLock.writeLock();

private HashMap<String, String> dictionary = new HashMap<String, String>();

public void set(String key, String value) {

write.lock();

try {

dictionary.put(key, value);

} finally {

write.unlock();

}

}

Northeastern University 21

public String get(String key) {

read.lock();

try{

return dictionary.get(key);

} finally {

read.unlock();

}

}

public String[] getKeys(){

read.lock();

try{

String keys[] = new String[dictionary.size()];

return dictionary.keySet().toArray(keys);

} finally {

read.unlock();

}

}

• Modify the database from the previous example

to use a ReadWriteLock

Class Exercise

Northeastern University 22

SCALABILITY

Northeastern University 23

Scalability

Engineering Concerns

• Threads make it possible to better utilize resources

• But also introduce overheads ….

– Creation, context switching, management, coordination

• Some terminology …

• Service time/latency/response time

– Measures of how fast a piece of work happens

• Capacity/throughput

– How much work can be performed with a given quantity of computing resources

Amdahl’s Law
The perfect world ….

http://www.datastax.com/2012/01/choosing-the-right-architecture-

for-big-data-scale

Amdahl’s Law

Amdahl’s Law

Amdahls’s Law Example

Serialized Access to a task queue (jcip p141)

public class WorkerThread extends Thread {

private final BlockingQueue<Runnable> queue;

public WorkerThread(BlockingQueue<Runnable> queue) {

this.queue = queue;

}

public void run() {

while (true) {

try {

Runnable task = queue.take();

task.run(); // results generated by thread stored somewhere?

} catch (InterruptedException e) {

break; /* Allow thread to exit */

}

}

}

}

Thread Overheads

• Context switching has costs

– Manipulates shared structures in OS/VM

– For a new thread, local data not likely in cache so higher latencies due to cache misses

• Cache pollution: newly running threads run slower until cache fills

– Depends on CPU, but typically a microsecond or so

• Every time a thread blocks it gets switched

– Blocking IO

– Contended locks

– Condition variables

• Frequently blocking threads reduce throughput

Reducing Lock Contention

• Serialization hurts scalability

• Context switching hurts performance

• Lock contention hurts both!!

How can we reduce lock contention?

Narrowing lock scope

• Busy (hot) locks limit scalability.

• Example:

– Operation holds a lock for 2 mSecs

– All threads must acquire this lock

• What is the maximum throughput we can

attain?

– No matter how many processors we have

Get In, Get Out (jcip p145)

public class AttributeStore {

private final Map<String, String>

attributes = new HashMap<String, String>();

public synchronized boolean userLocationMatches(String name,

String regexp) {

String key = "users." + name + ".location"; // construct key

String location = attributes.get(key); // search hashmap

if (location == null)

return false;

else

return Pattern.matches(regexp, location); // process results

}

}

Get in, Get out (jcip p145)

public class BetterAttributeStore {

private final Map<String, String>

attributes = new HashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {

String key = "users." + name + ".location";

String location;

synchronized (this) {

location = attributes.get(key);

}

if (location == null)

return false;

else

return Pattern.matches(regexp, location);

}

}

Easier – use thread safe collections

public class BetterAttributeStore {

private final ConcurrentHashMap<String, String>

attributes = new ConcurrentHashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {

String key = "users." + name + ".location";

String location;

location = attributes.get(key);

if (location == null)

return false;

else

return Pattern.matches(regexp, location);

}

}

Lock Splitting (jcip p146)

public class ServerStatusBeforeSplit {

public final Set<String> users;

public final Set<String> queries;

public ServerStatusBeforeSplit() {

users = new HashSet<String>();

queries = new HashSet<String>();

}

public synchronized void addUser(String u) {

users.add(u);

}

public synchronized void addQuery(String q) {

queries.add(q);

}

public synchronized void removeUser(String u) {

users.remove(u);

}

public synchronized void removeQuery(String q) {

queries.remove(q);

}

}

Lock Splitting (jcip p146)
public class ServerStatusAfterSplit {

public final Set<String> users;

public final Set<String> queries;

public ServerStatusAfterSplit() {

users = new HashSet<String>();

queries = new HashSet<String>();

}

public void addUser(String u) {

synchronized (users) {

users.add(u);

}

}

public void addQuery(String q) {

synchronized (queries) {

queries.add(q);

}

}

// other refactored methods omitted

}

Lock Striping

• Basic approach is to partition a data structure and use a different lock for each

partition

– ConcurrentHashMap uses 16 locks

– Each lock guards 1/16th of the hash buckets

• How many concurrent threads can be accessed in this example?

• What if we need to grow the hash map?

Lock Striping (jcip p148)

public class StripedMap {

// Synchronization policy: buckets[n] guarded by locks[n%N_LOCKS]

private static final int N_LOCKS = 16;

private final Node[] buckets;

private final Object[] locks;

private static class Node { ….} // stuff missing

public StripedMap(int numBuckets) {

buckets = new Node[numBuckets];

locks = new Object[N_LOCKS];

for (int i = 0; i < N_LOCKS; i++)

locks[i] = new Object();

}

Lock Striping (jcip p148)
private final int hash(Object key) {

return Math.abs(key.hashCode() % buckets.length);

}

public Object get(Object key) {

int hash = hash(key);

synchronized (locks[hash % N_LOCKS]) {

for (Node m = buckets[hash]; m != null; m = m.next)

if (m.key.equals(key))

return m.value;

}

return null;

}

public void clear() { // non atomic clear

for (int i = 0; i < buckets.length; i++) {

synchronized (locks[i % N_LOCKS]) {

buckets[i] = null;

}

}

} }

TESTING

• Tricky in the face of non-determinism

• Larger number of potential interactions and

failure cases

• Test suites therefore have to be more

extensive and run for longer

Testing concurrent programs

Northeastern University 42

• Most tests can be classified as testing:

– Safety

• Nothing bad ever happens

• Typically testing invariants hold

– Liveness

• Something good eventually happens

• Trickier – eg testing for deadlocks

• Also includes throughput, response times, scalability

Testing concurrent programs

Northeastern University 43

Testing for Correctness

• Similar as for testing sequential code

• Identify post conditions and invariants

• Let’s look at an example:

– Testing a bounded buffer (JCIP section 12.1)

Northeastern University 44

public class SemaphoreBoundedBuffer <E> {

private final Semaphore availableItems, availableSpaces;

private final E[] items;

private int putPosition = 0, takePosition = 0;

public SemaphoreBoundedBuffer(int capacity) {

if (capacity <= 0)

throw new IllegalArgumentException();

availableItems = new Semaphore(0);

availableSpaces = new Semaphore(capacity);

items = (E[]) new Object[capacity];

}

public void put(E x) throws InterruptedException {

availableSpaces.acquire();

doInsert(x);

availableItems.release();

}

public E take() throws InterruptedException {

availableItems.acquire();

E item = doExtract();

availableSpaces.release();

return item;

}

public boolean isEmpty() {

return availableItems.availablePermits() == 0;

}

public boolean isFull() {

return availableSpaces.availablePermits() == 0;

}

private synchronized void doInsert(E x) {

int i = putPosition;

items[i] = x;

putPosition = (++i == items.length) ? 0 : i;

}

private synchronized E doExtract() {

int i = takePosition;

E x = items[i];

items[i] = null;

takePosition = (++i == items.length) ? 0 : i;

return x;

}

Basic Unit Tests

• Test post-conditions and invariants, eg:

– New buffer should identify itself as empty

– New buffer should identify itself not full

– Insert N elements into a buffer with capacity N and check it is full

– Insert N elements into a buffer with capacity N and check it is not empty

Basic Unit Tests Examples

public class TestBoundedBuffer extends TestCase {

void testIsEmptyWhenConstructed() {

SemaphoreBoundedBuffer<Integer> bb = new SemaphoreBoundedBuffer<Integer>(10);

assertTrue(bb.isEmpty());

assertFalse(bb.isFull());

}

void testIsFullAfterPuts() throws InterruptedException {

SemaphoreBoundedBuffer<Integer> bb = new SemaphoreBoundedBuffer<Integer>(10);

for (int i = 0; i < 10; i++)

bb.put(i);

assertTrue(bb.isFull());

assertFalse(bb.isEmpty());

}

Testing Blocking Operations

• If an operation is meant to block, test only passes if thread does not proceed

• But for how long?

• Need to make an educated guess, e.g.:

– private static final long LOCKUP_DETECT_TIMEOUT = 1000;

• Example:

– Try to take an element from an empty buffer

– Create a taker thread, wait, and interrupt it if still blocked

– If take() succeeds, then test fails

– If take() successfully interrupted and exists, then test succeeds

void testTakeBlocksWhenEmpty() {

final SemaphoreBoundedBuffer<Integer> bb = new SemaphoreBoundedBuffer<Integer>(10);

Thread taker = new Thread() {

public void run() {

try {

int unused = bb.take();

fail(); // if we get here, it's an error

} catch (InterruptedException success) { // thread exits

}

}

};

try {

taker.start();

Thread.sleep(LOCKUP_DETECT_TIMEOUT);

taker.interrupt();

taker.join(LOCKUP_DETECT_TIMEOUT);

assertFalse(taker.isAlive()); // verify join returned successfully as thread will be dead

} catch (Exception unexpected) {

fail();

}

}

Testing Safety

• Race conditions are trickier to test

• Tests need to be multi-threaded and can be complex

• Want tests to effect non-determinism as little as possible

– Test code may obscure deadlocks in really evil cases

• Ideally checking the test properties does not require any

synchronization

– And hence effects order of execution as minimally as possible

Testing Bounded Buffer Example

• Check everything put into a queue/buffer comes out

– And nothing else!

• Basic approach:

– Each producer calculates a checksum for all the messages it produces

– Each consumer calculates a checksum for all the messages it receives

– When all producers/consumers complete, checksum are combined

• If they are equal, test passes

• Should generate test data randomly

– Minimize chances of tests accidentally passing

• Roll-your-own simple random number generator

– As RNGs are thread-safe and hence effect thread synchronization

– Each thread has own RNG so doesn’t need to be thread-safe

– Seeded with values based on time ensures different values every test

• We’ll see this in the example soon …

Testing Bounded Buffer Example

• To introduce more randomness, coordinate starting and termination of threads

– Ensure sequential thread operation doesn’t introduce an element of determinism

– Ensure testing of checksums is done after all threads finished

– Use CyclicBarrier to coordinate start and end behavior

• Termination condition doesn’t require thread interactions

– Producers and consumers create and remove known numbers of items

Testing Bounded Buffer Example

Spend a few minutes looking at

http://jcip.net/listings/PutTakeTest.java

See if you can understand how it works?

http://jcip.net/listings/PutTakeTest.java

public class PutTakeTest extends TestCase {

protected static final ExecutorService pool = Executors.newCachedThreadPool();

protected CyclicBarrier barrier;

protected final SemaphoreBoundedBuffer<Integer> bb;

protected final int nTrials, nPairs;

protected final AtomicInteger putSum = new AtomicInteger(0);

protected final AtomicInteger takeSum = new AtomicInteger(0);

public static void main(String[] args) throws Exception {

new PutTakeTest(10, 10, 100000).test(); // sample parameters

pool.shutdown();

}

public PutTakeTest(int capacity, int npairs, int ntrials) {

this.bb = new SemaphoreBoundedBuffer<Integer>(capacity);

this.nTrials = ntrials;

this.nPairs = npairs;

this.barrier = new CyclicBarrier(npairs * 2 + 1); // initialize the barrier +1 for main thread

}

void test() {

try {

for (int i = 0; i < nPairs; i++) { // create the threads

pool.execute(new Producer());

pool.execute(new Consumer());

}

barrier.await(); // wait for all threads to be ready

barrier.await(); // wait for all threads to finish

assertEquals(putSum.get(), takeSum.get());

} catch (Exception e) {

throw new RuntimeException(e);

}

}

class Producer implements Runnable {

public void run() {

try {

int seed = (this.hashCode() ^ (int) System.nanoTime());

int sum = 0;

barrier.await();

for (int i = nTrials; i > 0; --i) {

bb.put(seed);

sum += seed;

seed = xorShift(seed);

}

putSum.getAndAdd(sum);

barrier.await();

} catch (Exception e) {

throw new RuntimeException(e);

}

}

}

class Consumer implements Runnable {

public void run() {

try {

barrier.await();

int sum = 0;

for (int i = nTrials; i > 0; --i) {

sum += bb.take();

}

takeSum.getAndAdd(sum);

barrier.await();

} catch (Exception e) {

throw new RuntimeException(e);

}

}

}

Testing Concurrent Code

• Good example of the complexity of test cases can be higher than code

complexity

• Other things to test:

• Resource management

– See testLeak example in http://jcip.net/listings/TestBoundedBuffer.java

• Performance

– Requires adding timing information and monitoring

• Scalability

– Requires large volume tests and coordination of more resources

• These are central topics covered in Building Scalable Distributed Systems

– ☺

http://jcip.net/listings/TestBoundedBuffer.java

61

Summary

• Threads can be used to parallelize independent loop

iterations and independent recursive invocations.

• Readers-Writers is a classic concurrency problem

• Scalability requires careful design is always limited by

serialization

• Testing concurrent systems is tricky due to large

amount of failure modes and non-determinism

Northeastern University 62

