Northeastern University

Northeastern University - Seattle

CS5510
Professor lan Gorton

Northeastern University

Week 10

CONCURRENCY I

http://jcip.net/

Northeastern University

BRIAN GOETZ

DDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDD

Northeastern University

Overview

Loops/recursion and threads
Readers Writers and locking
Scalability

Testing

Northeastern University

Recap from last week

 |If threads share state, then you must use
locks to achieve thread-safety

— Synchronized
— Java.util.concurrent classes
* |f threads need to coordinate to order
actions
— Guarded conditions (wait/notify)
— Beware of deadlocks

« Use executors to manage threads

Northeastern University

Loops/Recursion and Threads

 |If we have a loop with completely
Independent iterations:

— Can use a thread to execute each iteration
« Effects on performance?

Northeastern University

void processSequentially(List<Element> elements) {
for (Element e : elements)
process(e);

}

void processinParallel(Executor exec, List<Element> elements) {
for (final Element e : elements)
exec.execute(new Runnable() {
public void run() {
process(e);

}
D;

JCIP Listing 8.10

Loops/Recursion

« Parallelization of sequential
loops works when:

— Each iteration is completely
iIndependent of others

— Work done in each iteration
IS enough to offset cost of
thread management

Northeastern University

GO0D
DESIGN.

Northeastern University

Recursion

« Often independent sequential loops in
recursive algos

« E.g. each iteration does not require results of
recursive iterations it invokes

« Examples?

Northeastern University

Recursion (JCIP Fig 8.11) Depth-First Tree
Traversal

public <T> void sequentialRecursive(List<Node<T>> nodes,
Collection<T> results) {
for (Node<T> n : nodes) {
results.add(n.compute());
sequentialRecursive(n.getChildren(), results);

}
}

Northeastern University

Recursion

public <T> void parallelRecursive(final Executor exec,
List<Node<T>> nodes,
final Collection<T> results) {
for (final Node<T> n : nodes) {
exec.execute(new Runnable() {
public void run() {
results.add(n.compute());

}
D;
parallelRecursive(exec, n.getChildren(), results);
}
}

Northeastern University

Recursion

public <T> Collection<T> getParallelResults(List<Node<T>> nodes)
throws InterruptedException {

ExecutorService exec = Executors.newCachedThreadPool();
Queue<T> resultQueue = new ConcurrentLinkedQueue<T>();

parallelRecursive(exec, nodes, resultQueue);

exec.shutdown();
exec.awaitTermination(Long.MAX_VALUE, TimeUnit. SECONDS);

return resultQueue;

Northeastern University

READERS WRITERS

Northeastern University

Readers-Writers Problem

 Classic concurrency .
problem Reader Writer Problem

* Multiple readers and writers
to a shared database

« Many concurrent readers

e 1 writer
— No other readers or writers

« Simple solution — writers
wait until no readers

Writers

Northeastern University

Readers Writers — Class Exercise

e Clone the repo at:
— https://github.com/gortonator/Readers\Writers

« Spend a few minutes to understand the code

* Run with various numbers of readers and
writers, eg:
-11
- 52
— 103

« What do you observe?

https://github.com/gortonator/ReadersWriters

Northeastern University

Readers Writers — Class Exercise

1. Modify the code to use Executors and
Runnables

2. How would you change the code to give
writers priority?

Northeastern University

ReadWriteLock

« ReadWriteLock maintains a pair of associated
locks,

« one for read-only operations
* one for writing

* The read lock may be held simultaneously by
multiple reader threads

— so long as there are no writers.
* The write lock is exclusive

Northeastern University

Quick Aside - RentrantLock

 Areentrant mutual exclusion Lock

— public class ReentrantLock extends Object, implements Lock,
Serializable

e same basic semantics as implicit monitor lock using
synchronized methods/statements

« Athread invoking lock will acquire the lock, when the
lock is not owned by another thread.

* Lock returns immediately if the current thread already
owns the lock.

« Some extended capabilities.
— Fair/unfair acquisition policies,
— IsLocked, getLockQueueLength

Northeastern University

Quick Aside - RentrantLock

class X {
private final ReentrantLock lock = new ReentrantLock();

...

public void m() {
lock.lock(); // block until condition holds

try {
/Il ... method body

} finally {
lock.unlock()
}
}
}

Northeastern University

Thread Safe Dictionary.

public class Dictionary {

private final ReentrantReadWriteLock readWriteLock =
new ReentrantReadWriteLock();

private final Lock read =readWriteLock.readLock();
private final Lock write = readWriteLock.writeLock();
private HashMap<String, String> dictionary = new HashMap<String, String>();

public void set(String key, String value) {
write.lock();
try {
dictionary.put(key, value);
} finally {
write.unlock();
}
}

Northeastern University

public String get(String key) {
read.lock();

try{
return dictionary.get(key);

} finally {
read.unlock();
}
}

public String[] getKeys(){
read.lock();
try{
String keys[] = new String[dictionary.size()];
return dictionary.keySet().toArray(keys);
} finally {
read.unlock();

}
}

Northeastern University

Class Exercise

« Modify the database from the previous example
to use a ReadWriteLock

Northeastern University

SCALABILITY

Northeastern University

Scalability

Scalability describes the ability to improve throughput or capacity when additional computing resources (such as
additional CPUs, memory, storage, or /0 bandwidth) are added.

Northeastern University

Engineering Concerns

Threads make it possible to better utilize resources

But also introduce overheads
— Creation, context switching, management, coordination

Some terminology ...

Service time/latency/response time
— Measures of how fast a piece of work happens
Capacity/throughput
— How much work can be performed with a given quantity of computing resources

Northeastern University

Amdahl’'s Law
The perfect world

Scale-Up Linearity

Client Writes/s by node count — Replication Factor = 3
1200000

1099837
1000000 -
800000 -
600000 -

400000 -

200000 -

0 50 100 150 200 250 300 350

NETELTX

http://www.datastax.com/2012/01/choosing-the-right-architecture-
for-big-data-scale

Northeastern University

Amdahl’'s Law

Throu t
Throughput i

Scalibility
barrier point

R

Non-linear system, growing beyond
a certain barrier point adds
complexity that hinders throughput
increase

Linear Scalable system, each
addition of an hardware unit adds a
throughput unit

Northeastern University

b)
Amdahl’s Law
Amdahl’s Law
20.00 |
LT
_
18.00 // Parallel Portion
16.00 / e 50%
/ e 75%
14.00 / 90%
y e 95%
_ 12,00 / l
< 10.00 -
8 4
& 8.00 /
4.00 /
100 = e et
0.00 -
— N <r (0] © N < (e0] (de] N <t o0 (de) N < (e 0] O
— on © N wn v— N < (@)) (@)] o) © o
- N P9 g g 5 8K 8

Number of Processors

Northeastern University
Amdahls’s Law Example
Serialized Access to a task queue (jcip p141)

public class WorkerThread extends Thread {
private final BlockingQueue<Runnable> queue;

public WorkerThread(BlockingQueue<Runnable> queue) {
this.queue = queue;

}

public void run() {
while (true) {
try {
Runnable task = queue.take();
task.run(); // results generated by thread stored somewhere?
} catch (InterruptedException e) {
break; /* Allow thread to exit */

}

Northeastern University

Thread Overheads

 Context switching has costs
— Manipulates shared structures in OS/VM

— For a new thread, local data not likely in cache so higher latencies due to cache misses
 Cache pollution: newly running threads run slower until cache fills

— Depends on CPU, but typically a microsecond or so
 Every time a thread blocks it gets switched

— Blocking IO

— Contended locks

— Condition variables

 Frequently blocking threads reduce throughput

Northeastern University

Reducing Lock Contention

« Serialization hurts scalability
 Context switching hurts performance
 Lock contention hurts both!!

How can we reduce lock contention?

Northeastern University

Narrowing lock scope

 Busy (hot) locks limit scalability.

« Example:
— Operation holds a lock for 2 mSecs
— All threads must acquire this lock

« What is the maximum throughput we can
attain?
— No matter how many processors we have

Northeastern University

Get In, Get Out (jcip p149)

public class AttributeStore {
private final Map<String, String>
attributes = new HashMap<String, String>();

public synchronized boolean userLocationMatches(String name,
String regexp) {
String key = "users." + name + ".location"; // construct key
String location = attributes.get(key); /[search hashmap
if (location == null)
return false;
else
return Pattern.matches(regexp, location); // process results

Northeastern University

Get in, Get out (jcip p149)

public class BetterAttributeStore {
private final Map<String, String>
attributes = new HashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;
synchronized (this) {
location = attributes.get(key);
}
if (location == null)
return false;
else
return Pattern.matches(regexp, location);

Northeastern University

Easier — use thread safe collections

public class BetterAttributeStore {
private final ConcurrentHashMap<String, String>
attributes = new ConcurrentHashMap<String, String>();

public boolean userLocationMatches(String name, String regexp) {
String key = "users." + name + ".location";
String location;

location = attributes.get(key);

if (location == null)
return false;
else
return Pattern.matches(regexp, location);

Northeastern University

Lock Splitting (jcip p146)

public class ServerStatusBeforeSplit {

public final Set<String> users;
public final Set<String> queries;

public ServerStatusBeforeSplit() {
users = new HashSet<String>();
queries = new HashSet<String>();

}

public synchronized void addUser(String u) {
users.add(u);

}

public synchronized void addQuery(String q) {
queries.add(q);

}

public synchronized void removeUser(String u) {
users.remove(u);

}

public synchronized void removeQuery(String q) {
gueries.remove(q);

}

Lock Splitting (jcip p146)

public class ServerStatusAfterSplit {
public final Set<String> users;
public final Set<String> queries;

public ServerStatusAfterSplit() {
users = new HashSet<String>();
gueries = new HashSet<String>();
}
public void addUser(String u) {
synchronized (users) {
users.add(u);

}

}
public void addQuery(String q) {

synchronized (queries) {
gueries.add(q);

}
}

/I other refactored methods omitted

Northeastern University

Northeastern University

Lock Striping

 Basic approach is to partition a data structure and use a different lock for each
partition
— ConcurrentHashMap uses 16 locks
— Each lock guards 1/16™ of the hash buckets

« How many concurrent threads can be accessed in this example?
« What if we need to grow the hash map?

Northeastern University
Lock Striping (jcip p148)

public class StripedMap {
/I Synchronization policy: buckets[n] guarded by locks[n%N_LOCKS]
private static final int N_LOCKS = 16;
private final Node[] buckets;
private final Object[] locks;

private static class Node {} // stuff missing

public StripedMap(int numBuckets) {
buckets = new Node[humBuckets];
locks = new Object[N_LOCKS];
for (inti=0;i<N_LOCKS; i++)
locks[i] = new Object();

Northeastern University

Lock Striping (jcip p148)

private final int hash(Object key) {
return Math.abs(key.hashCode() % buckets.length);
}

public Object get(Object key) {
int hash = hash(key);
synchronized (locks[hash % N_LOCKS]) {
for (Node m = buckets[hash]; m = null; m = m.next)
if (m.key.equals(key))
return m.value;

}

return null;
}
public void clear() { // non atomic clear
for (inti=0; i < buckets.length; i++) {
synchronized (locks[i % N_LOCKS]) {
buckets]i] = null;

}
}
1}

Northeastern University

TESTING

Northeastern University

Testing concurrent programs

* Tricky In the face of non-determinism

« Larger number of potential interactions and
failure cases

 Test suites therefore have to be more
extensive and run for longer

Northeastern University

Testing concurrent programs

* Most tests can be classified as testing:

— Safety
« Nothing bad ever happens
» Typically testing invariants hold

— Liveness
« Something good eventually happens
 Trickier — eg testing for deadlocks
 Also includes throughput, response times, scalability

Northeastern University

Testing for Correctness

« Similar as for testing sequential code
* |dentify post conditions and invariants

« Let's look at an example:
— Testing a bounded buffer (JCIP section 12.1)

Northeastern University

public class SemaphoreBoundedBuffer <E> {
private final Semaphore availableltems, availableSpaces;
private final E[] items;
private int putPosition = 0, takePosition = 0;

public SemaphoreBoundedBuffer(int capacity) {
if (capacity <= 0)
throw new lllegalArgumentException();
availableltems = new Semaphore(0);
availableSpaces = new Semaphore(capacity);
items = (E[]) new Obiject[capacity];
}

public void put(E x) throws InterruptedException {
availableSpaces.acquire();
dolnsert(x);
availableltems.release();

}

public E take() throws InterruptedException {
availableltems.acquire();
E item = doExtract();
availableSpaces.release();
return item;

public boolean isEmpty() {
return availableltems.availablePermits() == O;

}

public boolean isFull() {
return availableSpaces.availablePermits() == 0O;

}

private synchronized void dolnsert(E x) {
int i = putPosition;
items][i] = Xx;
putPosition = (++i == items.length) ? O : i;

}

private synchronized E doExtract() {
int | = takePosition;
E x = items]i];
items[i] = null;
takePosition = (++i == items.length) ? 0 : i;
return Xx;

Northeastern University

Northeastern University

Basic Unit Tests

 Test post-conditions and invariants, eg:
— New buffer should identify itself as empty
— New buffer should identify itself not full
— Insert N elements into a buffer with capacity N and check it is full
— Insert N elements into a buffer with capacity N and check it is not empty

Northeastern University

Basic Unit Tests Examples

public class TestBoundedBuffer extends TestCase {

void testIsEmptyWhenConstructed() {
SemaphoreBoundedBuffer<integer> bb = new SemaphoreBoundedBuffer<integer>(10);
assertTrue(bb.isEmpty());
assertFalse(bb.isFull());

}

void testlsFullAfterPuts() throws InterruptedException {
SemaphoreBoundedBuffer<integer> bb = new SemaphoreBoundedBuffer<integer>(10);
for (inti=0;i<10; i++)
bb.put(i);
assertTrue(bb.isFull());
assertFalse(bb.isEmpty());

Northeastern University

Testing Blocking Operations

If an operation is meant to block, test only passes if thread does not proceed
But for how long?

Need to make an educated guess, e.qg.:

— private static final long LOCKUP_DETECT_TIMEOUT = 1000;
Example:

— Try to take an element from an empty buffer

— Create a taker thread, wait, and interrupt it if still blocked

— If take() succeeds, then test fails

— I take() successfully interrupted and exists, then test succeeds

Northeastern University

void testTakeBlocksWhenEmpty() {
final SemaphoreBoundedBuffer<integer> bb = new SemaphoreBoundedBuffer<integer>(10)
Thread taker = new Thread() {
public void run() {
try {
int unused = bb.take();
fail(); // if we get here, it's an error
} catch (InterruptedException success) { // thread exits

}

}

I

try {
taker.start();
Thread.sleep(LOCKUP_DETECT_TIMEOUT);
taker.interrupt();
taker.join(LOCKUP_DETECT_TIMEOUT);
assertFalse(taker.isAlive()); // verify join returned successfully as thread will be dead

} catch (Exception unexpected) {
fail();

}

}

Northeastern University

Testing Safety

« Race conditions are trickier to test

 Tests need to be multi-threaded and can be complex

« Want tests to effect non-determinism as little as possible
— Test code may obscure deadlocks in really evil cases

 |deally checking the test properties does not require any
synchronization
— And hence effects order of execution as minimally as possible

Northeastern University

Testing Bounded Buffer Example

 Check everything put into a queue/buffer comes out
— And nothing else!

 Basic approach:
— Each producer calculates a checksum for all the messages it produces
— Each consumer calculates a checksum for all the messages it receives

— When all producers/consumers complete, checksum are combined
* Ifthey are equal, test passes

Northeastern University

Testing Bounded Buffer Example

 Should generate test data randomly

— Minimize chances of tests accidentally passing
 Roll-your-own simple random number generator

— As RNGs are thread-safe and hence effect thread synchronization

— Each thread has own RNG so doesn'’t need to be thread-safe
— Seeded with values based on time ensures different values every test

« We'll see this in the example soon ...

Northeastern University

Testing Bounded Buffer Example

 To introduce more randomness, coordinate starting and termination of threads
— Ensure sequential thread operation doesn'’t introduce an element of determinism
— Ensure testing of checksums is done after all threads finished
— Use CyclicBarrier to coordinate start and end behavior
 Termination condition doesn’t require thread interactions
— Producers and consumers create and remove known numbers of items

Northeastern University

Spend a few minutes looking at

http://icip.net/listings/PutTakeTest.|Java

See if you can understand how it works?

http://jcip.net/listings/PutTakeTest.java

Northeastern University

public class PutTakeTest extends TestCase {
protected static final ExecutorService pool = Executors.newCachedThreadPool();
protected CyclicBarrier barrier;
protected final SemaphoreBoundedBuffer<integer> bb;
protected final int nTrials, nPairs;
protected final Atomicinteger putSum = new Atomicinteger(0);
protected final Atomiclnteger takeSum = new Atomiclnteger(0);

public static void main(String[] args) throws Exception {
new PutTakeTest(10, 10, 100000).test(); // sample parameters
pool.shutdown();

}

public PutTakeTest(int capacity, int npairs, int ntrials) {
this.bb = new SemaphoreBoundedBuffer<integer>(capacity);
this.nTrials = ntrials;
this.nPairs = npairs;
this.barrier = new CyclicBarrier(npairs * 2 + 1); // initialize the barrier +1 for main thread

Northeastern University

void test() {
try {
for (inti=0; i< nPairs; i++) { // create the threads
pool.execute(new Producer());
pool.execute(new Consumer());
}
barrier.await(); // wait for all threads to be ready
barrier.await(); // wait for all threads to finish
assertEquals(putSum.get(), takeSum.get());
} catch (Exception e) {
throw new RuntimeException(e);

}
}

Northeastern University

class Producer implements Runnable {
public void run() {

try {
int seed = (this.hashCode() * (int) System.nanoTime());
int sum = 0;

barrier.await();

for (int i = nTrials; i > 0; --i) {
bb.put(seed);
sum += seed:;
seed = xorShift(seed);

}

putSum.getAndAdd(sum);

barrier.await();

} catch (Exception e) {
throw new RuntimeException(e);

}
}
}

Northeastern University

class Consumer implements Runnable {
public void run() {

try {
barrier.await();
int sum = O;

for (inti=nTrials; i > 0; --i) {
sum += bb.take();
}
takeSum.getAndAdd(sum);
barrier.await();
} catch (Exception e) {
throw new RuntimeException(e);

}
}
}

Northeastern University

Testing Concurrent Code

« Good example of the complexity of test cases can be higher than code
complexity

 Other things to test:
* Resource management
— See testLeak example in http://jcip.net/listings/TestBoundedBuffer.java
 Performance
— Requires adding timing information and monitoring
 Scalability
— Requires large volume tests and coordination of more resources

 These are central topics covered in Building Scalable Distributed Systems
- ©

http://jcip.net/listings/TestBoundedBuffer.java

Northeastern University

Summary

Threads can be used to parallelize independent loop
iterations and independent recursive invocations.

Readers-Writers is a classic concurrency problem

Scalability requires careful design is always limited by
serialization

Testing concurrent systems is tricky due to large
amount of failure modes and non-determinism

61

Northeastern University

